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BUOYANCY EFFECTS ON TURBULENT SWIRLING FLOWS 

H. S. TAKHAR AND M. A. HALIM* 

Unioersity of Munchester, Simon Engineering Labs, Oxford Road. Munchester M13 9PL, U.K 

SUMMARY 

A three-parameter model of turbulence applicable to free boundary layers has been developed and applied for 
the prediction of axisymmetric turbulent swirling flows in uniform and stagnant surroundings under the 
action of buoyancy forces. The turbulent momentum and heat fluxes appearing in the time-averaged 
equations for the mean motion have been determined from algebraic expressions, derived by neglecting the 
convection and diffusion terms in the differential transport equations for these quantities, which relate the 
turbulent fluxes to the kinetic energy of turbulence, k, the dissipation length scale of turbulence, L, and the 
temperature covariance, T'*. Differential transport equations have been used to determine these latter 
quantities. The governing equations have been solved using fully implicit finite difference schemes. The 
turbulence model is capable of reproducing the gross features of pure jet flows, buoyant flows and swirling 
flows for weak and moderate swirl. 

The behaviour of a turbulent buoyant swirlingjet has been found to depend solely on exit swirl and Froude 
numbers. The predicted results indicate that the incorporation of buoyancy can cause significant changes in 
the behaviour of a swirling jet, particularly when the buoyancy strength is high. The jet exhibits similarity 
behaviour in the initial region for weak swirl and weak buoyancy strengths only, and the asymptotic case of a 
swirlingjet under the action of buoyancy forces is a pure plume in the far field. The predicted results have been 
found to be in satisfactory agreement with the available experimental data and in good qualitative agreement 
with other predicted results. 

KEY WORVS Turbulence Buoyancy Swirl 

INTRODUCTION 

A buoyant swirling jet, emitted into an otherwise stagnant surrounding may be produced by 
discharging a fluid, whose density is different from that of the environment, with azimuthal as well 
as axial velocity from a vertical nozzle or an orifice. The degree of swirl imparted to the jet may be 
characterized by the ratio of the azimuthal to the axial velocity at the jet exit, and the buoyancy 
strength of the jet is determined by the magnitudes of the axial velocity and the density (or 
temperature) difference between the jet centre and the environment at the source. The large-scale 
effects of swirl on the rate of spread, mixing and penetration of a non-buoyant jet suggest that the 
practically important cases of buoyant flows (e.g. the flow patterns associated with the 
environmental pollution) could be managed more efficiently with the aid of swirl. 

In the past the prediction of the characteristics of free jet flows, with or without the effect of swirl 
and or buoyancy, was most commonly done by employing integral methods. Recently, however, 
emphasis has shifted towards the use of differential methods. Both of these methods are based on 
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the laws of conservation of mass, momentum and energy or species concentration which are 
expressed in terms of partial differential equations. The integral methods assume empirical profile 
shapes for velocity, temperature or concentration, so that the partial differential equations can be 
integrated over the jet cross-section to yield ordinary differential equations describing the axial 
variation of some characteristic velocity and density. The system of equations is normally closed by 
making an assumption about the entrainment of ambient fluid into the turbulent jet. The integral 
methods are difficult to extend to more complex turbulent flows in which it is often difficult to 
prescribe the profile shapes and to relate the entrainment rate to the local parameters that influence 
this rate. 

The prediction of the flow characteristics of turbulent swirling plumes., in an otherwise still 
environment, using integral methods was undertaken by Lee,' Narain and Uberoi2 and Ross3 Lee 
and Ross postulated a direct relationship between the unknown entrainment and the mean flow 
variables based on physical and dimensional arguments, whereas Narain and Uberoi achieved the 
closure indirectly by considering an additional equation for the conservation of mechanical kinetic 
energy. 

The differential methods, on the other hand, do not employ profile and entrainment assumptions 
but obtain the profile and entrainment rates as part of the solution. In general, these methods are 
constituted by the same partial differential equations as those used in the integral methods but the 
closure of the governing equations is achieved by introducing assumptions about the turbulent 
processes in order to determine the extra terms representing the turbulent fluxes of momentum and 
heat or species concentration appearing in the governing partial differential equations. These 
assumptions form a turbulent model which, in contrast to the global profile and entrainment 
assumptions in integral methods, describes the state of turbulence at each point in the flow and is 
therefore essentially much more general. Normally, the performance of a differential method 
depends entirely on the turbulence model it employs. 

Turbulence models of various levels of complexity have been reported in the literature. The 
simplest ones, such as the well-known Prandtl mixing-length hypothesis, relate the turbulent fluxes 
directly to the local mean flow quantities whereas the most complex models solve differential 
transport equations for the individual fluxes. However, only a few of these imrbulence models have 
been used for predicting the flow characteristics of turbulent jets with or without the effects of swirl 
or buoyancy. Rodi and Spalding4 developed a two-parameter (k-kL) modlel for predicting free jet 
flows. Lilley' developed two anisotropic eddy viscosity models for predicting turbulent swirling 
flows-one an extended Prandtl mixing-length model and the other a two-parameter (k-kL) 
model. Chen and Rodi6 modified Launder's' model proposals and Madni and Pletcher8 used a 
mixing-length model for predicting vertical buoyant jets in uniform and stratified environments. 
Launder and Morseg presented an in-depth study of swirl problems with a high-order Reynolds 
stress closure model. Chen and Nikitopoulos" used Chen and Rodi's6 model for predicting the 
near-field region characteristics of a vertical buoyant jet in a uniform environment. 

The aim of the present work is to develop and test a three-parameter (k-kL-T'2) model of 
turbulence for predicting the flow characteristics of a turbulent swirling jet in uniform and 
stagnant surroundings under the action of buoyancy forces. This work may be considered as an 
extension of Lilley's' work for the prediction of non-buoyant swirling flows using a two-parameter 
(k-kL) model of turbulence. 

DEVELOPMENT OF THE TURBULENCE MODEL 

We consider a steady low Mach number jet produced by discharging a fluid with azimuthal as well 
as axial velocities and having its axis aligned with the gravity vector. The density of the jet is 
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different from that of the environment so that it is subject to buoyancy forces. Furthermore, it will 
be assumed that the jet is remote from the walls, is generated from a single finite source and is 
issuing into a stagnant surrounding. 

In a cylindrical polar co-ordinate system (r, 8, z), with the z-axis pointing vertically upwards and 
with associated mean velocities, u, u and w, in these directions, the governing equations for steady 
@/at = 0) and axisymmetric ( a / a O  = 0) turbulent mean motion, employing the usual boundary 
layer approximations (a/& >> a/az), reduce to:" 

Continuity 

Radial momentum 

Swirl momentum 

Axial momentum 

Energy 

In the above equations, p, T and p are the time-averaged pressure, temperature and density 
respectively, g is the acceleration due to gravity, the subscript 'a' denotes the ambient condition, an 
overbar indicates a time-averaged quantity and a prime denotes the deviation from that average. In 
deriving equations (1) to (9, the usual Boussinesq approximation, in which the density variation is 
accounted for only in the gravitational term, has been employed and it has been assumed that in 
free turbulent flows the laminar terms are much smaller in magnitude than the corresponding 
turbulent quantities. 

An inspection of the equations (1) to ( 5 )  reveals that they contain a number of unknown functions 
of turbulence correlations. Therefore, before these equations may be used for predictive purposes, it 
is necessary that the unknown turbulence correlations must be rewritten in terms of calculable 
quantities. 

First consider the Reynolds stress component G. The differential transport equation for this 
correlation has been given by Launder.' In the present investigation this equation is simplified by 
neglecting the convective and diffusive transport terms of U'WI to give 
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where C' is a constant and E is the rate of dissipation of the turbulence kinetic energy by viscous 
action. For high Reynolds number turbulence, the dissipation rate E is given by 

k 3 / 2  
E = C , - -  

L 

where C ,  is a constant. Using equation (7), equation ( 6 )  may be recast as 

and.p,.Jp may be identified as the effective or eddy diffusivity for momentum. 
In analogy with equation (8), the heat flux term, u", is written as 

(7) 

where p T / p  may be visualized as the effective or eddy diffusivity for heat; pT  is related to prZ via the 
relation 

(11) 
P r z  

PT 
[T =- 

where cr, is the turbulent Prandtl number. 

transport terms are neglected, the exact transport equation for 
Equation (9) contains the normal stress component p. When the convective and diffusive 

reduces to' 
- 
uI2 = Ck 

where C is a constant. Then, using equations (10) and (12), equation (9) may be written as 

where C ,  and C2 are constants. Also, in analogy with equation (8), the correlation UIU' may be 
written as 

where the r-9 viscosity, pro, is related to prz via the r-8 viscosity numbler given by 

(15) 

The equation for the kinetic energy of turbulence which will be presented later contains the heat 
flux, w' T'. When the convective and diffusive transport terms are neglescted, the exact transport 
equation for the correlation WIT', using equation (7), reduces to' 

P r z  
ur0 = - 

P r e  

__ 

__ 

where c 1 T  and C , ,  are constants. 
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Equations (13) and'(l6) require the knowledge of the turbulence kinetic energy, k, the dissipation 
length scale, L, and the temperature covariance, T'2. In this work, the required information has 
been provided by employing differential transport equations for k, kL and p. The equations fork 
and T'2 can be derived using the transport equations for the velocity fluctuations u', u' and w' and 
temperature fluctuation T', respectively. Under the simplifying assumptions already made in 
deriving equations (1)-(5), the fully modelled equations for k and T'Z reduce, respectively, to 

and 

in which C3, is a constant ( T k  and 07 may be regarded as the effective Prandtl numbers fork and T't, 
respectively, and are related to prz via the relations 

where ,uk and p~ may be regarded as the effective viscosities for k and p,  respectively. 
Following Rod1 and Spalding4 and L i l l e ~ , ~  the kL-equation is taken as 

(20) 

where C,, Cs, c 4 T  and C, are constants, okL may be regarded as the effective Prandtl number for kL 
and 

may be regarded as the swirling flow Richardson number; OkL is related to pr,  via the relation 

(22) PI2 
UkL = - 

PkL 

where pkL may be regarded as the effective viscosity for kL. 
Equations(8),(10),(13),(14),(16),(17), (18)and(20)may beused toclose the set ofequations(1)- 

(5). Since a total of three extra equations have to be solved simultaneously with the equations for 
mean motion, the turbulence model represents a three-parameter (k-kL-F) turbulence model. 

The numerical values of the 10 model constants and of o,, fJk,  okL, ore and 07 appearing in the 
equations (13)-(22), together with the source from which they are obtained, are presented in 
Table 1. In this table, S, is the local swirl number to be defined in the next section. 

The equation system to be solved is parabolic and, as a result, to determine the solution at any 
point (r,  z), initial orifice conditions ( z  = 0,O < r < rE,  where E denotes the external boundary) and 
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Table I. Numerical values of the model constants 

Model Value 
constants selected Source 

*k 
*kL 
C R  

C l T  

C 2 T  

C 3 T  

Rodi and Spalding4 

::;: } Chen and Rodi6 

065 
070 Chen and Rodi" 
1 .oo 
0.84 Computer optimization 

Taken to be equal to ok and okL 

edge boundary conditions (z > 0, r = 0 and z > 0, r = rE) must be given for all the dependent variables. 
For the inner boundary, I ,  which for the present case is a symmetry axis, the normal gradients of all 
the variables are given zero values, the exception being u, which is given a definite zero value. At the 
outer boundary the specifications for the different variables are 

__ 
u = v = w = p  - p = T  - T = k = k L = T r 2 = 0  (23) 

on the assumption that the surrounding fluid is stagnant air at uniform temperature and 
atmospheric pressure. 

The initial profiles of w, k, kL, T and T'2 have been taken to be uniform (flat) across the section. 
The initial values of w and T have been chosen to give the desired values of the exit Reynolds and 
Froude numbers. The initial value of k has given the flow an initial turbulence level of 1 per cent. The 
initial u-profile has been chosen on the assumption that the fluid is initially in a state of solid body 
rotation, and the magnitude of the angular velocity has been dependent upon the exit swirl number 
intended. 

THE GOVERNING PARAMETERS 

The fluid motion in a jet with swirl and buoyancy is, in general, governed by the inertial, viscous, 
buoyant and centrifugal forces. The local character of the flow is determined by the relative 
magnitude of these forces at each point. The overall character of the flow is determined by the 
strength of the forces at the source and by the ambient conditions. 

The ratio of the inertial to viscous forces is called the Reynolds number and, for the conditions at 
the jet exit, may be written as 

W O D  R e = -  
V 

where D is the diameter of the jet at exit, v is the kinematic viscosity and the subscript 0 denotes the 
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exit conditions. The ratio of the buoyant to viscous forces is the Grashoff number, given by 

In a pure jet, only the Reynolds number is of influence, and in a pure plume only the Grashoff 
number. Turbulent jets and plumes of greatest practical interest are known to have high Reynolds 
and Grashoff numbers, respectively, so that the viscous forces are negligible in these flows. 
Therefore, the flow does not depend on these numbers, as long as these are high enough. 

No numerical experiments were made for constant values of S (initial swirl number) and F (exit 
Froude number) with varying values of Re (exit Reynolds number) and G (Grashoff number). 
However, for all the work reported in the paper, the numerical value of Re was 10,000 or more and 
that of G at exit was of the order of lo9 or more. 

The ratio of inertial to buoyant forces is called the Froude number (strictly densimetric Froude 
number) and, for uniform velocity and density profiles at the source, can be defined as 

The Froude number is the most important parameter for turbulent buoyant jets. For pure jet and 
pure plume, the values of this parameter are infinity and zero, respectively. 

Gross transport integrals of the equations ( 3 )  and (4) over a cross-section of the jet, after applying 
the physical boundary conditions cited previously, lead, respectively, to 

dz 

The integrated swirl momentum equation (27) implies that the axial flux of angular momentum in a 
swirling jet is conserved only when the total circulation at  infinity is zero. For a swirling jet 
emerging into otherwise undisturbed surroundings, a further integration of equation (27) yields 1: pvwr’dr = - F ,  

2n 

where F ,  is the constant axial flux of angular momentum. 
Equation (28) states that the axial change of flow force, comprised of momentum flux and 

centrifugal pressure, is due to the effect of buoyancy (i.e. the density difference) only. For a (non- 
buoyant) swirling jet, the right-hand side of this equation is zero so that 

where F, is the constant axial flux of axial momentum, comprised of momentum and pressure 
terms. 

Since both F, and F Z  are invariants in a (non-buoyant) swirling jet with zero circulation at 
infinity, they can be used to characterize the jet by defining a strength. A local non-dimensional 
parameter, called the Local swirl number, may be taken as 
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where rE is the local external radius of the jet. It has an initial orifice value of 

where D is the exit diameter of the jet. In a swirling jet S, decreases progressively in the downstream 
direction, the asymptotic case being that of a non-swirling flow, and at  any axial location it 
characterizes the effect of rotation on the flow. 

The swirling jets have often been classified based on the magnitude of the initial swirl parameter. 
As S is increased from its non-swirling value ( = 0) to higher values, the cases of weak, moderate and 
strong swirling jets are presented. For weak swirl (0 < S < 0*20), the pressure variations are small 
(and even negligible), the coupling between the equations is small and the simplified boundary layer 
equations considered in this work are valid. For moderate swirl (0.20 < S d 0..50), the simplified 
boundary layer equations including pressure variations are somewhat questionable, but are still 
used,' for present-day knowledge of turbulence necessitates similar approximations elsewhere in 
any analysis. A strong swirling jet (S > 0.5) possesses strong radial and axial pressure gradients in 
the regions near the orifice and the axial one is sufficient to cause a recirculation zone to be set up in 
the region of the 0 r i f i ~ e . l ~  Evidently the reduced boundary layer equations will not be valid here 
and the full equations must be solved.' 

THE PREDICTION PROCEDURE 

The reduced boundary layer equations (1)-(5), (17), (18) and (20) are parabolic and highly coupled. 
Recently, powerful numerical techniques have been evolved for solving such systems of equations 
accurately and economically. One of them is the fully-implicit finite difference forward-marching 
prediction procedure embodied in GENMIX.16 GENMIX is a general computer program for 
predicting steady two-dimensional boundary layer flows and the embodied numerical technique is 
stable, accurate and economical. A non-dimensional stream function is employed as the 
independent variable across the layer and the main novelty lies in the choice of grid, which adjusts 
its width automatically at each forward step so as to conform to the thickness of the layer in which 
significant variations are present. Consequently, the numerical prediction procedure embodied in 
GENMIX has been used to solve the reduced boundary layer equations considered in this work. 
Here only the highlights of the numerical scheme used are considered. Modifications of the basic 
procedure to solve the swirl momentum equation satisfactorily can be found in Reference 11 and 
the details of the basic scheme, together with program listings, can be found in References 13 and 
16. 

Since the solution procedure embodied in GENMIX employs the non-dimensional stream 
function as the cross-stream independent variable, the governing equations are first transformed 
from (r,  z) co-ordinates to von Mises (+, z )  co-ordinates. In the von Mises co-ordinate system the 
governing equations possess the common form 

where q5 stands for any of the dependent variables w, T, k, k L  and T'2, pels is the effective viscosity for 
4 and S, represents the source term in the 4-equation. Rather than expresssing the swirl momentum 
equation (3)in this form, the diffusion term of that equation may be rewritten in terms of u/r so as to 
eliminate the large source term which is a cause of great inaccuracy in any numerical solution 
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procedure. The swirl momentum equation then becomes 

In the Patankar-Spalding numerical scheme, equations (33) and (34) are further transformed 
from von Mises ($, z )  co-ordinates to (a, z) co-ordinates where 

is the non-dimensional stream function the value of which always lies between 0 (at the inner edge, 
I) and 1 (at the outer boundary, E). 

The variation of o from the inner to the outer boundary is assumed to be linear. To ensure that 
the conservation condition is satisfied, each differential equation is integrated over a small control 
volume extended half-way between the adjacent grid points. On the assumption that any 
dependent variable # varies linearly with o between grid points and making use of the unknown 
downstream #-values (so as to use a fully-implicit scheme), the general 4-equation (33) and the 
swirl momentum equation (34) yields the general finite difference equation 

DiCpi,D = Ai# i+  l , D  + B i 4 i -  1 . D  + Ci (36) 
in which the coefficients A ,  Bi, Ci and Di at the ith grid point, which are different for different 
equations, can be evaluated from the quantities which are known at the upstream station. By 
substituting 

p 2  = A 2 P 2  

, i = 3 , 4  ,..., N - 1  Ai p .  = 
* Di-BiPi-, 

and 
BiQi-1 + Ci 

Q .  = , i = 3 , 4 ,  ..., N - 1  ' Di - &Pi- (37) 

where N is the total number of cross-stream grid points including the boundary values, it is easy to 
show that equation (36) satisfies the equation 

C p i  = Pdi-  1 + Qi (38) 
For each step in Az downstream, the coefficients Pi and Qi can be evaluated from known 

upstream values, beginning with the initial orifice values, and, since the grid edge values of the 
dependent variables are known, equation (38) can be solved for all the values of the dependent 
variables in turn at each successive downstream grid location. In this way, the solution can be 
marched downstream as far as required. 

The incorporation of swirl can cause significant variation of pressure in the axial direction, 
particularly when the swirl is strong and an accurate solution of the axial momentum equation (4) 
demands that the pressure at each downstream grid location be evaluated as accurately as possible. 
As a result, the swirl momentum equation (3)  was solved first so that the downstream pressure 
gradient could be evaluated accurately. The axial momentum equation and the equations fork, kL, 
T and Tf2  were then solved in turn. 
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The computer time for solving six equations up to 220 downstream steps for N = 40 and 
Az = 0 . 1 ~ ~  on the CDC 7600 computer was about four seconds. This represents a speed of about 
330 equations per step per second. 

RESULTS AND DISCUSSION 

The proposed turbulence model has been shown to be capable of reproducing, with the same values 
of the model constants, the gross features of pure jet flows, buoyant flows and swirling flows for 
weak and moderate swirl. For strong swirl, however, the predicted results have indicated a 
progressive decline, with increased swirl, in the ability of the model to describe the experimental 
data accurately. Thus, the simplified boundary layer equations of the second section, based on the 
assumption that ajar>> ajaz, do not seem to be valid for a strong swirling jet and the full equations 
have to be solved. 

The results predicted by the proposed turbulence model and presented in Figures 1-7 indicate 
that, at any downstream location, the behaviour of a turbulent swirling jet in uniform and stagnant 
surroundings and under the action of buoyancy forces, is determined solely by two physical 
parameters associated with the source conditions-the initial swirl number, S, and the exit Froude 
number, F .  When the initial swirl number is low ( S  < 0.2) and exit Froude number is high (F 2 loo), 
the jet spreads linearly in the axial direction and the profiles of the mean quantities exhibit 
similarity behaviour in an initial region relatively close to the jet exit. The Ilow characteristics of 
this similarity region are more or less the same as those in the corresponding region of a (non- 
buoyant) swirling jet. This is because for high exit Froude numbers the effect of buoyancy is felt at 
some considerable distance downstream of the jet exit and the flow characteristics in the initial 
region are affected very little by buoyancy. For high initial swirl numbers and or low exit Froude 
numbers the predicted results indicate that a true similarity of the flow in the initial region is not 
possible. 

In the far field where the magnitude of the swirl velocity becomes negligibly small, the jet turns to 
a buoyancy-dominated plume in which the profiles of the mean and turbulent quantities exhibit 
true similarity behaviour and the jet spreads linearly in the axial direction. The flow characteristics 
of this far-field similarity region correspond closely to those in the plume region of a buoyant jet 
and are not affected by the initial conditions. Thus, the asymptotic case of a swirling jet in uniform 
and stagnant surroundings and under the action of buoyancy forces is a pure plume in the far field, 
a fact first reported by Lee.’ 

The axial development of the velocity half-width, I ~ . ~ ~ ,  defined as the value of r at which the axial 
velocity reduces to one-half of its maximum value, is presented in Figure 1 .  For a given degree of 
swirl, a low exit Froude number causes the jet to grow in its width at a considerably high rate in the 
initial region of the jet. The axial location at which the jet starts to grow in its width seems to be the 
beginning of the intermediate region (the region of transition between the initial non-buoyant and 
final buoyant regions) of the jet at which the buoyancy forces start to operate on the flow. The 
available experimental data suggest that the location of the start of the intermediate region of a 
(non-swirling) buoyant jet is given byL2 

z + zo 
D 

___- - 05F”2(po/pa) l ’4  (39) 

where zo is the axial distance of the virtual origin from the jet exit. This location of the beginning of 
the intermediate region of a buoyant jet seems to hold for a buoyant swirling jet also. From 
Figure 1 it is readily seen that, in the first ten exit diameters or so of the intermediate region, the rate 
of spread of the velocity half-width (and hence of the jet width) is considerably higher than that in 



TURBULENT SWIRLING FLOWS 

10 

8 -  

t 
e 6  
% 

d 
m 

L -  

2 -  

1175 

r 

S=O.L, F=16.8 

5=0.3. F=16.8 

- 

I I I I 1 I 

6 

5 

L 

1 

I I I I I I 

0 L 8 12 16 20 2L .28 32 
z/D - 01 

la1 

z / D  - 
I bl 

Figure 1. Axial development of the velocity half width for various values of exit swirl and Froude numbers 

the corresponding region of a (non-buoyant) swirling jet. It will be shown later in this section that at 
the onset of the intermediate region the jet entrains the ambient fluid, due to the introduction of 
buoyancy forces, at a rate which is considerably higher than that in a non-buoyant jet. Owing to 
this rapid increase in the mass flow rate and the presence of swirl, a rapid mixing of the entrained 
fluid with the jet fluid takes place and this rapid mixing is characterized by the higher rates of 
growth of the velocity and temperature half-widths and a higher rate of decay of the swirl velocity. 
Introduction of buoyancy in Narain and Uberoi’s2 integral model also results in exceptionally 
large mixing which acts to produce a large rate of spread, consequently increasing the decay of the 
azimuthal velocity. 

From Figure 1 it is seen that, after about ten exit diameters of the intermediate region, the flow in 
the low Froude number jet seems to be more or less established and the rate of spread of the 
velocity half-width remains more or less constant for some distance downstream. This region of 
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established flow possibly corresponds to that region in a swirling jet in which the swirling flow 
shows similarity behaviour but the rate ofspread, 6,( = dr,.,,/dz) in the former is higher than that 
in the latter because the effect of buoyancy is to increase the rate of spread 6, in a buoyant jet over 
that in a non-buoyant jet. After this flow-established region, the rate of spread h ,  decreases 
gradually with downstream distance due to the weakening of swirl and finally reduces to the 
constant plume-similarity value ( = 0.1 10) in the far field. 

For high exit Froude numbers the flow exhibits similarity behaviour in the initial region of the jet 
in which the flow parameters behave as in the corresponding similarity region of a (non-buoyant) 
swirling jet. This is because when the exit Froude number is high, the intermediate region starts 
some distance downstream, the location being determined by using equation (39), and the flow 
characteristics in the initial region are not affected by buoyancy. At the start of the intermediate 
region. the mass flow rate does not increase appreciably because of the weak buoyancy strength of the 
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Figure 2. Axial development of the temperature hatf width for various values of the exit swirl and Froude numbers 
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jet. Since the swirl velocity decays as being proportional to z - ~  in the initial non-buoyant 
regi01-1,'~ the magnitude of this velocity at the onset of the intermediate region is also small 
compared to its initial value. As a result, the incorporation of buoyancy in a high Froude number 
swirling jet does not produce any significant change in the rate of spread of the velocity half-width 
of the jet, rather the velocity half-width increases gradually for a distance downstream due to the 
action of buoyancy. Further downstream the axial growth of the velocity half-width is the same as 
that in a low Froude number jet. 

From Figure 1 it is readily seen that, for a given exit Froude number, a higher rate of spread, 6,, 
is always associated with a higher exit swirl number in the initial region of the jet, a result which was 
also predicted by Lee,' Narain and Uberoi' and Ross.3 In the final plume similarity region, 
however, 6, approaches a constant value ( = 0.1 10) irrespective of the initial degree of swirl. 

The axial variation of the temperature half-width, Y~,~,, defined as the value of Y at which the 
temperature excess (T-  T,) reduces to one-half of its maximum value, for various values of the exit 
Froude and swirl numbers are shown in Figure 2. The temperature half-width shows the similar 
variation in the axial direction to that of the velocity half-width with the exit Froude and swirl 
numbers except that the incorporation of buoyancy causes the rate of spread 6,( = dr,.,,/dz) to 
decrease in a buoyant jet than that in a non-buoyant jet, although for the rate of spread 6, the 
reverse is true. 

Lee'7 reported the experimentally determined values for the constant rates of spread 6, and 6, 
in the initial similarity region of a buoyant swirling jet for the case when S = 0.1 and F N 250. For 
these values of the two source parameters, the proposed model predicts 6, = 0097 and 6, = 0 112 
which are in good agreement with the corresponding values of 0.100 and 0.1 16 reported by Lee.' 
The profiles of the mean axial velocity, swirl velocity and temperature predicted by the present 
model for the case when S = 0 1  and F = 302 have been plotted in Figure 3 (the subscript 'm' 
denoting the maximum value) and compared with the experimental data of Lee17 for S = 0.1 and 
F 1: 250. The agreement between the predicted profiles and the experimental data is satisfactory. 

The axial decay of the centreline (or maximum) axial velocity for various values of the exit 
Froude and swirl numbers is shown in Figure 4. For low exit Froude numbers the centreline 
velocity increases with downstream distance in the initial core-flow region, a fact predicted by Lee' 
and Chen and Nikitopoulos." After this core-flow region, the axial velocity starts to decay and 
initially the rate of decay is very high compared to that in any other region of the jet. A comparison 
of Figure 4 with Figure 1 shows that this high rate of decay of the axial velocity (and the associated 
high rates of spread) occurs at the beginning of the intermediate region as a result of the large 
mixing of the entrained fluid with the jet fluid. Further downstream the rate of decay of the axial 
velocity is gradually reduced by the action of buoyancy until it decays finally as z - ' ' ~  in the plume- 
similarity region. For high exit Froude number, after an initial core flow region, the axial velocity 
starts to decay as z-' as in a non-buoyant jet. However, in the intermediate region the decay rate 
is gradually reduced by the buoyancy force until in the plume-similarity region it decays as z - " ~ .  
The high rate of decay of the axial velocity in a low Froude number jet at the beginning of the 
intermediate region is in qualitative agreement with the results predicted by Lee' and Narain and 
Uberoi,' whereas, in a high Froude number jet, the introduction of buoyancy reduces the rate of 
decay of the axial velocity, a result predicted both by Lee' and Ross.3 Unfortunately the above 
results could not be compared with Lee'sI7 data because his initial conditions cause the axial 
velocity to decay immediately after the jet exit showing no potential core flow. 

From Figure 4 it is seen that a higher initial swirl causes the decay of the axial velocity more 
rapidly in the initial region. The rate of decay gradually reduces with downstream distance for all 
degrees of swirl although the rate of decrease is higher for a higher initial swirl. As a result the rate of 
decay of the axial velocity becomes slower with a higher degree of swirl further downstream until, 
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Figure 3. Profiles of the axial velocity, temperature and swirl velocity at 2/23 = 10 for F = 302 and S = 0 1  

in the plume-similarity region, the axial velocity decays as z - ' ' ~  for all degrees of swirl. The above 
results are in qualitative agreement with those predicted by Lee,' Narain and Uberoi2 and Row3 

The axial decay of the centreline (or maximum) temperature for different values of the exit 
Froude and swirl numbers is presented in Figure 5. Unlike the axial velocity, the maximum 
temperature never increases from its exit value in the initial core-flow regia'n, a result predicted by 
Chen and Nikitopoulos" for buoyant jets. For low exit Froude number, the decay of temperature 
starts closer to the jet exit and, for the reasons already stated, the rate of decay is relatively high at 
the beginning of the intermediate region. With an increase in the downstream distance, the rate of 
decay is gradually reduced until, in the final region, the temperature decay:$ as For high exit 
Froude numbers, the axial decay of temperature is delayed in the initial region but once the decay 
starts, it takes place at a rather steep slope. Further downstream the rate of decay is the same as in 
the low Froude number case. The above findings for the decay of the maxirnum temperature are in 
qualitative agreement with the predictions of Lee.' 

From Figure 5 it is seen that, in the initial region, a higher rate of decay of the maximum 
temperature is always associated with a higher degree of swirl. Further downstream, however, the 
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rate of decay rather decreases with a high degree of swirl. These predictions are also in qualitative 
agreement with those of Lee.' 

The axial developments of the maximum swirl velocity for various values of the exit Froude and 
swirl numbers are shown in Figure 6. For a high exit Froude number, the decay of swirl velocity is 
reduced by the action of buoyancy, a fact that is in qualitative agreement with the predictions of 
Lee' and Ross.3 For the case when S = 0.1 and F = 302, the predicted results are found to be in 
good agreement with the experimental data of Lee" for S N 0.1 and F N 250. For low exit Froude 
numbers the maximum swirl velocity remains constant or increases from its exit value in a short 
region close to the jet exit. This peculiar decay characteristic of the swirl velocity for low exit 
Froude numbers was first predicted by Lee' and is similar to that of the axial velocity shown in 
Figure 4. After this short core region, the swirl velocity decays very rapidly. As stated earlier, this 
rapid decay of the swirl velocity is a result of the large mixing of the entrained and jet fluids at the 
start of the intermediate region and is in qualitative agreement with the results predicted by Narain 
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Figure 6. Axial decay of the maximum swirl velocity for various values of the exit swirl and Froude numbers 
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and Uberoi2 From Figure 6 it is also observed that, for a given exit Froude number, the decay of 
the swirl velocity is quicker for a higher initial swirl and vice versa and this is in qualitative 
agreement with the results predicted by Lee,' Narain and Uberoi2 and Ross3 

The axial variation of the mass flow rate for various values of the exit Froude and swirl numbers 
is shown in Figure 7. For a given exit swirl number, the mass flow rate of the jet increases with an 
increase in the buoyancy strength (i.e. with a decrease in the value of F )  and for low exit Froude 
numbers the mass flow rate is considerably higher, particularly in the initial region, than that in a 
non-buoyant jet. A comparison of Figure 7 with Figure 1 indicates that this rapid increase in the 
mass flow rate begins to occur at the start of the intermediate region due to the action of buoyancy 
and in the first ten exit diameters or so of the intermediate region, the mass flow rate is considerably 
higher than that in any other region of the jet. Both the Narain and Uberoi2 and Ross3 models 
predicted mass flow rates which are higher than those in a corresponding (non-bouyant) swirling 
jet, although the mass flow rates predicted by Narain and Uberoi are considerably higher than 
those predicted by Ross. 

From Figure 7 it is readily seen that, for a given exit Froude number, the mass flow rate is higher 
for a higher initial degree of swirl, a result predicted both by Narain and Uberoi2 and Ross3 
models. 

CONCLUDING REMARKS 

The aim of the present work has been to develop a three-parameter ( k - k G p )  model of turbulence 
applicable to free boundary layers and use it for the predictions of the flow characteristics of a 
swirling jet in uniform and stagnant surroundings under the action of buoyancy forces. The model 
is capable of reproducing many features of pure jet flows, buoyant flows and swirling flows for weak 
and moderate swirl. For strong swirl the simplified boundary layer equations do not seem to be 
valid as indicated by a progressive decline in the ability of the turbulence model to describe the 
experimental data accurately. 

The results of the numerical investigation presented in Figures 1-7 indicate that the 
incorporation of buoyancy can produce significant changes in the behaviour of a turbulent swirling 
jet in uniform and stagnant surroundings, particularly for high buoyancy strengths, affecting the 
growth of the jet width, the axial decay of the mean quantities, the mass flow rates and so on. The 
behaviour of the jet at any downstream location depends solely on the exit swirl and Froude 
numbers. The predicted results have been found to be in satisfactory agreement with available 
experimental data and in qualitative agreement with other theoretical results and may help, at the 
end, to control the flow under investigation. 

During the course of the present work it has become quite apparent that the state of 
experimental knowledge is much less satisfactory for jets with swirl and buoyancy effects than for 
pure, swirling and buoyant jets. The validity of a turbulence model can be tested only when 
sufficient reliable and accurate experimental data are available. The results presented in Figures 1- 
7 have indicated that incorporation of buoyancy has a considerable effect on the flow 
characteristics of a swirling jet and sufficient and reliable experimental data are necessary to make 
a final judgement. 
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